Hallo zusammen,
ich habe hier folgende Aufgabe.
Bei der Produktion des großen Stieleises Typ " Magnum " sollen 25g Schokolade und 6g Mandelsplitter in den Überzug gebracht werden. Eine Maschine hat 6 Produktionsbahnen. Da die Zufuhr der Mandelsplitter gelegentlich etwas unregelmäßig erfolgt, wird die geforderte Mindestmenge in dem Überzug nicht errecht, wobei die Mängelquote um so höher liegt, je weiter die Produktionsbahn vom Einfüllstutzen entfernt ist.
Für alle 6 Profuktionsbahnen ergibt sich eine durchschnittliche Mängelquote von 2%. Mit welcher Wahrscheinlichkeit sind in einer Packung von 50 Stück
höchstens 2 fehlerhafte zu erwarten?
Ich hoffe mir kann hier jemand helfen.
Viele Grüße
Denny
Stochastik Wahrscheinlichkeitsrechnung
-
Denny -
11. April 2007 um 09:26 -
Erledigt
-
-
Hey Gast!
Hier findest Du die Antworten
Hast Du eine Frage, die Du gerne beantwortet haben möchtet? Klickt auf den folgenden Link und Du wirst die Antwort finden:Egal, ob es sich um eine Frage zu einem bestimmten Thema in eurem Studium oder um allgemeine Ratschläge handelt - wir haben die Antworten, die ihr sucht. Also zögert nicht und klickt auf den Link! Wir freuen uns darauf, euch zu helfen.
-
Eine Mängelquote von 2% besagt, dass die Wahrscheinlichkeit für das Auftreten eines
Mangels bei p = 0,02 liegt.
Dementsprechend ist die Wahrscheinlichkeit für eine mangelfreie Packung bei q = 0,98.
Die Formulierung "höchstens" meint, dass 0,1 und 2 als mögliche Ergebnisse in Frage
kommen.
à
p= 0,02
q=0,98
n=50
k=2
(--> Formeln im Anhang)
P(x<=2) = P(X=0) + P(X=1) + P(X=2)
k P(X<=k)
0 0,364169680087
1 0,735771394462
2 0,921572251649
3 0,982241919302
4 0,996790257974
5 0,999521782786
6 0,999939873318
7 0,999993505923
8 0,999999389091
9 0,999999949393
10 0,999999996275
11 0,999999999755
12 0,999999999985
13 0,999999999999
Das heißt, die Wahrscheinlichkeit liegt bei 92.16% höchstens 2 fehlerhafte in einer Packung von 50 Stück zu erwarten.
Kann mir meine Lösung und meinen Rechenweg noch jemand bestätigen??!??Vielen Dank und Viele Grüße
Denny -
Hat Dir damals jemand Deine Lösung als richtig bestätigt, bzw. hat sie sich als richtig erwiesen ? Ich hänge derzeit an der gleichen Aufgabe fest.
LG, Püppi -
Hallo,
20 von 20 Punkten...
Du solltest dies aber genau trainieren, es ist eine 60%ige Grundlage im Seminar BEWI02. Wünsche dir noch viel Spaß
Viele Grüße
Denny -
Ich kriege da nix vernünftiges raus. kannst Du mir Deinen Rechenweg kurz erläutern ?
Danke schön... -
Du musst im ganzen Text nur drei Dinge herausfiltern:
1. Deine ZV ist binomial verteilt.
2. Deine Stichprobe umfasst 50.
3. Die Wahrscheinlichkeit eines Mangels beträgt 0,02.Es geht um einen Maximalausschuss von 2.
Also gelten für Dich folgende Wahrscheinlichkeiten:
1. P(Kein Ausschuss) + P(1 Ausschuss) + P(2 Ausschuss)
oder 2. 1 - Verteilungsfunktion(Binomial, 2 Ausschussteile)
1. kannst Du über die Dir bekannte Formel bestimmen.
2. Einfach aus der Tabelle ablesen.
Gruß,
Markus -
So weit war ich schon, aber danke...
Ich habe nur ein kleines Taschenrechner-Problem, glaube ich. Wenn ich die Multiplikationsformel nachrechnen will, dann kommt bei mir nichts vernünftiges raus.
Ich habe in meinem Übungsheft eine Aufgabe nachzurechnen versucht, aber auch da streikt mein Rechner.
:crazy: -
Vielleicht rechnest Du die Binomialkoeffizienten falsche? Da gibt es i.d.R. eine Tast "nCR" oder ähnliches.
Gruß,
Markus -
Wie blöd... Wer lesen kann ist klar im Vorteil, sag ich ja immer wieder !!! ich habe den Binominalkoeffizienten falsch gerechnet. Dann kann ja auch nichts richtiges rauskommen. Manchmal ist es halt doch gut eine kurze Pause einzulegen...
:hammer:
LG, Püppi